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In his paper [J. Acoust. Soc. Am. 77, 2050 (1985)] Blackstock presented a generalized Burgers
equation for the propagation of one-dimensional weakly nonlinear waves in various media. His
results, and the approach he employed there, however, are limited to harmonic waves. In this paper,
we present a general approach to model nonlinear waves of more general wave forms that propagate
in media with arbitrary absorption and dispersion relations. The resulting equation is again called
the generalized Burgers equation (to follow the terminology of the literature). It is found that steady
shock solutions for various media can be described by the corresponding simplified version of the
equation. An efficient numerical method by means of spectral analysis is developed for solving the
generalized Burgers equation. Typical results exemplified by the case of a sinusoidal wave source

are also reported in this paper.

PACS number(s): 03.40.Gc, 03.40.Kf, 02.60.Nm, 83.10.Ji

I. INTRODUCTION

Propagation of one-dimensional finite-amplitude waves
in thermoviscous fluids is commonly described by the
classical Burgers equation [1],

Ugp — butltl = (B/C%)uut' y (1)

where u is particle velocity, z is distance from the source,
t' =t — x/co is retarded time (¢ is actual time), co is
small-signal sound speed, (3 is the coeflicient of nonlin-
earity, and b is proportional to the coefficients of viscosity
and heat conduction. The second order time derivative
upy is a typical term for thermoviscous medium. The
corresponding small-signal (i.e., when the wave ampli-
tude is small) absorption coefficient o expressed in the
frequency domain is given by o = bw?, where w is the
source frequency. The dispersion coefficient, however, is
zero in this particular case.

When the medium cannot be characterized as ther-
moviscous, that is, when the dispersion is not negligible
and « is not proportional to w?, it is still possible to
derive a Burgers-like equation. Observing that many of
the weakly nonlinear waves in various media have simi-
lar forms, Blackstock [2] generalized the classical Burgers
equation to

uz + Lu] = ﬁzuut: , (2)
€o

where Lfu] is a linear operator that describes the
small-signal absorption and dispersion properties of the
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medium. Following Blackstock, we will call Eq. (2) the
generalized Burgers equation hereafter. The generalized
Burgers equation can be applied to media with arbi-
trary dispersion and absorption relations, even though
in some cases these two relations are known only empiri-
cally. When u is time harmonic, i.e., u ~ exp(iwt’ — {z),
Blackstock showed that L = (u, where { is a function
related to the absorption-dispersion relations of the par-
ticular medium. His argument, however, is limited to
time-harmonic signals. Our goal in this paper is to gen-
eralize his result to cover wave forms of more general
shapes in media with arbitrary absorption-dispersion re-
lations. The rest of this paper is organized as follows: In
Sec. I1, we present a general approach to derive the gener-
alized Burgers equations in various media. The station-
ary solutions for some of these equations are presented
in Sec. IIL. It is found that most of the equations derived
do not possess any closed form solution. However, they
can be integrated numerically. Section IV is devoted to
a discussion of the numercial solutions of the generalized
Burgers equation.

II. GENERALIZED BURGERS EQUATION

To generalize Blackstock’s result, we first observe that
Eq. (2) can be expressed in the frequency domain in the
form

Fp(w,z) + ((w)F(w,x)
_ zﬁzL/m F(,2)F(w— o', z)'ds’ , (3)
V22T Joxo
where F' is the Fourier component of u:

! - °° w,z)et dw
u(t,m)—m/_wF(,) dw . (4)
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Note that the second term on the left hand side of Eq. (3)
has the same form as the corresponding one derived by
Blackstock for harmonic waves. Although Blackstock
has demonstrated this result only for harmonic waves,
the same argument can be applied to the cases when
we have wave forms of more general shapes. This can
be established in the following. Neglecting the nonlin-
ear term on the right hand side of Eq. (3) (i.e., when
the signal is weak), we obtain a partial differential equa-
tion for F(w,z). The general solution of that equation
is F(w,z) = g(w) exp(—(z), where g(w) is an arbitrary
function of w. Substituting F' back into Eq. (4), it is
obvious that Eq. (3) is valid for waves which satisfy the
condition u(t',z) ~ [ g(w)exp(iwt’ — {z); i.e., as long
as the spatial dependence of u is exponentially decaying
when the amplitude of u is weak.

Next taking the inverse Fourier transform of Eq. (3),
we obtain

== [ atu@eke-e) . @

where the kernel K is the inverse Fourier transform of (,
ie.,

mmi%[ﬂmmwt. (6)

Formally, the function {(w) is composed of two functions,
namely,

((w) = a(w) —iy(w) , (7)

where a is the small-signal absorption coefficient and ~
is the dispersion relation

=2~ 225)

The symbol cpp(w) in the above formula is the phase
velocity at frequency w. The absorption and dispersion
relations are not independent; they are related to each
other by the Kramers-Kronig relations. The Kramers-
Kronig relations can be written in various equivalent
forms. The following version presented by O’Connell,
Jaynes, and Miller [3] has been found to be convenient in

our discussion:
!
Gg (w
_ w2 ’

Gale) = ‘;P/o %

[P0 G1 (w)]_l/z )
[pocon(w)/2) wG2(w)

where pg is the ambient density of the medium and P
means the Cauchy principal value. Hence, after one
determines the absorption coefficient o for a certain
medium, either theoretically or empirically, one can then
derive the corresponding dispersion relation v (or vice
versa) by means of the above Kramers-Kronig relations.

G1 ((U)

cpn(w) =

a(w) =
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Many of the well-known nonlinear wave equations can
be reproduced by means of Egs. (2) and (5). For example,
for a thermoviscous fluid where a = bw?, v = 0, the
kernel K is proportional to the second order derivative
of the Dirac 6 function. This can be proved as follows:

mmi%/ bw2etduw

b 8% [ ..
- =z e“tdw
Vo 3t2 /
—bv2n 5 t
3t2 t)
Substituting this kernel in Eq. (5) thus reduces Lu]
to —bugy and the classical Burgers equation, Eq. (1),
is recovered. Similarly, if the medium exibits single
relaxation such that o = mw T/2c0(1 + w?r?), v =
mw371%/2¢o(1 + w?7?), where m is the strength of rela.x—
ation, and 7 is the relaxation time, we can prove that
(see Appendix A)

m 8 “a__ .

Substituting Eq. (8) in Eq. (2), we reproduce the well-
known nonlinear wave equation in a single relaxing
medium [4].

For complex media, distributions of relaxation pro-
cesses are possible. This mechanism is commonly chara-
terized by a distribution function of relaxation times
g(7/70). (Some authors use distribution functions of re-
laxation frequencies instead.) The parameter 7o denotes
an arbitrarily chosen reference relaxation time. Some of
these distribution functions are discrete, while others are
continuous, depending on the particular medium. For
instance, the major relaxation processes in air are the vi-
brational and rotational relaxation of N3, O3, and CO,.
The distribution function is obviously discrete. However,
for media constituted by complex molecules, such as bio-
logical tissues, polymers, etc., the distribution functions
are continuous. The distribution function g can be de-
rived either by physical reasoning or by phenomenological
arguments. The author [5] has discussed the special case
when g = 79/7, a function which has been proved to be
appropriate to describe ultrasonic absorption of biomed-
ical soft tissues [6,7]. Using the above outlined Fourier
transform approach, we can derive the following gener-
alized Burgers equation for tissues (see Appendix B for
derivation):

lI

L{u]

'

du 2y mo 8 [t Bu

Il !
2000t | o R

_ t”)dt”
B Ou?
- 5 (9)
2p0c ot
where 7; and 7, are the largest and smallest relaxation

times in the medium. The kernel K in this particular
case is found to be

K(t) = E1(t/11) — E1(t/7s) (10)

where E; is the exponential integral of the first order [8].
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As a final example, let us consider the dissipation due
to a boundary layer. It is well known that in a boundary
layer @ = ay/w and v = —a\/w [9,10], where a is a con-
stant related to the coefficient of viscosity, thermal con-
ductivity, and geometry factors for the boundaries. Ap-
plying the inverse Fourier transform on the corresponding
¢, we thus recover (see Appendix C)

2 " N
L[u] =a\/;/;°o 'U,tu(IL',t )—ﬁdt . (11)

III. STATIONARY SOLUTIONS
(STEADY SHOCK SOLUTIONS)

By stationary solution (or steady shock solution), we
mean the particular solution which does not change its
wave shape with propagation distance. The stationary
solution for the generalized Burgers equation can be de-
rived by dropping the first term on the left hand side of

Eq. (2):

\/%/ dt"u(z,t")K(t' —t") = guut: . (12)

0

Equation (12) is a nonlinear integrodifferential equation.
In general, the solution of Eq. (12) requires information
about the kernel K. Analytical solutions for cases with
only thermoviscous dissipation [Eq. (1)] and with only
a single relaxation mechanism [Eq. (8)] have been found
(see, for examples, [4]). For some other kinds of kernels
which do not possess analytical solutions, we can still
derive a fairly general numerical algorithm to solve the
corresponding integral equations. Note that in the two
generalized Burger equations derived for the single relax-
ation and multiple relaxation cases, there is a common
factor 8/0t' in front of the integrals. This allows us to
simplify the equations by integrating with respect to t’
once. Let us, for example, consider the multiple relax-
ation case. Integrating the equation with respect to t/,
we obtain

Yy
v=1-20 [ K-y . (13

In Eq. (13) the particle velocity v and the retarded time
t’ have been replaced, respectively, by dimensionless vari-
ables v = u/up and y = wot’. Here ug and wp are,
respectively, the characteristic particle velocity and fre-
quency at the source. The constant D = mgco/2Buo
is the ratio of the relaxation strength to the nonlinear
parameters. When D < 1, the relaxation effect is neg-
ligible, compared to the nonlinear effect (and vice versa
for D > 1). Note also that the integration constant has
been chosen to satisfy the boundary conditions v — +1
as y = *oo. No closed form solution can be found for
Eq. (13). [See [5] for a discussion on the asymptotic
solution of Eq. (13) by means of the strained coordi-
nate perturbation method.] We can, however, solve the
equation numerically by means of the succesive iteration
method [11]. First, integrating by parts the integral on
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the right hand side of Eq. (13) yields

o [ K-y (14)
=v - -y
2D, Ky —ydy
where KX = (dK/dy')/In(ni/7s) and D, = Dln(7/7,).
Note that Eq. (14) is translational invariant, i.e., the
equation is unchanged under the transformation y —
Y + Ya, where y, is an arbitrary constant. Without loss
of generality, we can therefore choose the particular solu-
tion that passes through the origin. Next, we apply the
successive iteration method to Eq. (14). This yields the
following algorithm:

1 — p()?

2D, > (19)

Yy
,U(n+1) — / ’C(y _ y’)’ll(n)dy, _

where the integer index n denotes the value of v at
the nth iteration step. To start the iteration, we use
v(® = tanh(y/D,). This corresponds to the asymptotic
solution (D, > 1) in the single relaxation case. Analysis
of the exact solution of the corresponding single relax-
ation equation,

D-1
yzln[i(prv) ] ;
(1—v)P+1
shows that the wave form becomes multivalued when
D < 1. Thus, we limit the iteration scheme to D, > 1.
Experience shows that the scheme works very well in
most cases.

Figure 1 shows the wave form of a strong shock (D =
1.5) for a single relaxing medium. Wave-form steepening
occurs because of the nonlinear propagation effect. It
also shows asymmetry around the origin because of the
dispersion effect. In contrast, wave forms of the steady
shock for a thermoviscous medium are symmetric when
the dispersion « is zero. For comparison purposes, we
have included also the exact solution (the dashed curve)

15

FIG. 1. Steady shock solution for the generalized Burgers
equation in medium with single relaxation process at D = 1.5.
The solid curve is the numerical solution and the dashed curve
is the exact solution.
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15

FIG. 2. Steady shock solution for the generalized Burgers
equation in a medium with multiple relaxation processes at
D = 1.5,r = 0.1 The solid curve is the numerical solution and
the dashed curve is the exact solution when D = 1.5,r =1
(single relaxation).

in the figure. It is found that the numerical solution is
quite close to the exact one; this provides the credibility
of the iteration scheme. Figure 2 shows the numerical
solution of Eq. (15) for a multiple relaxing medium. The
wave has the same strength as the one in Fig. 1, but
with a broad bandwidth of the relaxation distribution
(1s/71 = 0.1). We have included also the steady shock
solution for a single relaxing medium with 7,/7; = 1 (the
dashed curve) for comparison. It is found that the wave
form for the multiple relaxing case shows a wider half-
width compared to the single relaxation one. Further-
more, the degree of asymmetry becomes less significant.
This implies that distributing the relaxation processes
over a wider frequency band strengthens the opposition
to steepening. Indeed, these figures show some interest-
ing interplay between the nonlinear effect and the relax-
ation effect.

IV. NUMERICAL SOLUTIONS

In this section, we present the numerical solutions to
the full form of the generalized Burgers equation (2). For
demonstration purposes, we concentrate on media carry-
ing multiple relaxation mechanisms. Application of the
method to other media should be obvious. In princi-
ple, both time-domain and frequency-domain (or spec-
tral) approaches can be used. Both approaches have their
own merits. For the time-domain approach, one solves
the nonlinear integrodifferential equation directly by us-
ing the finite-difference method to transform the original
equation into a system of algebric equations. The advan-
tage of this approach is that it applies both to periodic
and nonperiodic wave forms. The disadvantage of this
method, however,; is very time consuming, because of the
fact that the resulting algebric system generally involves
a large nonsparse matrix in each iteration step which may
not be solved easily.
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For periodic wave forms, however, the frequency-
domain approach is more appropriate. In the frequency-
domain approach, one uses the discrete Fourier transform
to convert Eq. (2) to a system of coupled ordinary dif-
ferential equations for the harmonic components. The
system of equations can then be solved numerically, for
example, by the Runge-Kutta method. The wave form
at various spatial distances from the source is then de-
termined by summing the contributions from all of the
frequency components. Our experience shows that this
method can be very fast and accurate provided that the
amplitude of the wave form is not too strong. When
the wave is very strong, however, a very large number of
harmonic components must be retained if the shocks are
to be described faithfully; consequently, the computation
time is long. The finite-difference method may be more
suitable in this situation. The numerical scheme solving
Burgers-like equations in the frequency domain was first
developed by Trivett and Van Buren [12]. However, their
algorithm is limited to a signal without any dc compo-
nent. We have modified their alogrithms so that they can
be applied to wave forms of general shapes.

We now apply the spectral method to the generalized
Burgers equation. First we expand v in a Fourier series:

v(o,y) = Y vn(0)e™ (16)
vn(0) = 5- /_ " o(o,y)edy (17)

where v, (o) is the nth harmonic frequency component
of the wave form at spatial position o. Again, we have
replaced the physical distance = by a dimensionless dis-
tance o = z/z,, where z, = c2/Buowy is the shock forma-
tion distance [1]. By using these expressions, we trans-
form Eq. (2) into a system of differential equations [which
is basically the discretized version of Eq. (3)],

dv,, in
— 4+ (pTsv, = ?vn o,

do (18)

The function (, is the absorption-dispersion function
evaluated at the frequency of the nth harmonic com-
ponent. The term on the right hand side of Eq. (18)
represents the convolution

oo

Up OUp = E

m=—00

*
UYmUm—pn

(19)

where the superscript * denotes complex conjugate. For
practical numerical purposes, we limit the number of har-
monics included in the calculation. We let n have values
ranging from —N to N, where N is a large enough pos-
itive integer, e.g., N = 125 or 256. Since v is a physical
measurable quantity, it is a real function. This implies
v_n = v, and thus Eq. (19) becomes

n—1 N
Up, O Uy, = 20V, + E UmnUn—m + 2 E Um U,
m=1 m=n+1

(20)
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FIG. 3. Wave-form distortion for an originally sinusoidal
wave at various distances from the source: ¢ = 0, 0 = 1,
0=3,0=5 D=05r=0.1.

We can integrate Egs. (18) and (20) step by step, be-
ginning from the initial wave form v(0,y) = f(y). After
solving v,,, wave forms at various o are then determined
by the formula

N
v(0,y) =vo(0) + ) _ 2[va(0)|cos(ny +¢n) . (21)

n=1

The amplitude |v,| and the phase ¢, can be determined
by vp = |vn|ei®n.

Note that the first term vy in Eq. (21) represents the
dc term in the wave form. Geometrically, it is the total
area enclosed by the wave form. Its value is a constant,
according to the area preservation law proved in [5]. For
the sinusoidal wave source, it is zero. For a pulsed wave
form, e.g., a temporal Gaussian wave, it is nonzero.

Figures 3-5 show the wave forms obtained by the spec-
tral method when the medium has multiple relaxation
mechanism. (Numerical solution of the correspoding gen-
eralized Burgers equation for the boundary layer problem
has been studied by Sugimoto [14] from a different ap-
proach.) Each set of four curves shows the progressive
distortion and decay of the wave as o increases from 0 to

FIG. 4. Wave-form distortion for an originally sinusoidal
wave at various distances from the source: ¢ = 0, 0 = 1,
o=3,0=5 D=025r=0.1.
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FIG. 5. Wave-form distortion for an originally sinusoidal
wave at various distances from the source: ¢ = 0, 0 = 1,
oc=3,0=5. D=0.25r=0.01.

5. The first two sets are for a weak wave (Fig. 3) and a
stronger wave (Fig. 4), respectively. Comparison shows
that, as expected, the stronger wave has a shorter rise
time and the wave form is more asymmetric. The ring-
ing on the o = 3 curve in Fig. 4 is Gibbs’s phenomenon,
which illustrates the difficulty encountered for the spec-
tral method when we are dealing with very strong waves.
Notice that at 0 = 5 the ringing has practically disap-
peared. At this distance, relaxation has gained the up-
per hand in its battle with nonlinear steepening, and the
shock has dispersed to the point that the number of har-
monic components retained (125 in this case) is enough
to give a true picture of the wave form. The wave forms
shown in Fig. 5 have the same strength as the ones in
Fig. 4, but the bandwidth of the relaxation processes is
an order of magnitude greater. The nearly complete ab-
sence of ringing for the profiles in Fig. 5 implies that
wider bandwidth does strengthen the absorption capa-
bility of the medium.

V. CONCLUSIONS

We have presented in this paper a general approach
to derive weakly nonlinear wave equations in media with
arbitrary absorption and dispersion relations. Numer-
ical algorithms for solving both the steady shock and
progressive waves have been reported. We believe that
the approaches presented here could be useful for stud-
ies of nonlinear waves propagating in media with novel
absorption-dispersion relations.
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APPENDIX A

Substituting @ = mw?7/2co(1 + w?r?) and v =
mw37?/2¢o(1 + w?7?) in Eq. (7) yields

m w2T

<=_

2¢co 1 + iwT

(A1)

Defining y = wr and T = t/7, we can write the inverse
Fourier transform of this ¢ function as

m 1 &2 /‘°°e,yT 1,
2¢co /277 T2 |_ 141y y

The integrand in Eq. (A2) has a simple pole at z = i
in the z complex plane. When T' > 0, we can enclose
this pole by using a semihemisphere contour in the upper
half-plane. The residual of the contour integral equals
2mexp(—T). When T < 0, it is easy to show that the
integral vanishes by using a lower half-plane contour.
Therefore,

(A2)

K(t) = _E‘/ﬁaa—; {e"To(T)} (A3)
™ Vame T {6(T) — 26(T) + &'(T)} , (A4)

2(:7’

where 6 is the Heaviside step function and 4 is the Dirac
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delta function. Substituting this kernel into Eq. (5) fol-
lowed by some algebra thus yields Eq. (8).

APPENDIX B

Let the distribution function of the relaxation time be
g ~ 1/7. The absorption coefficient for the media with
continuous distribution of relaxation processes should
therefore be an integral of the absorption coefficient due
to single relaxation, multiplied by the distribution func-
tion, i.e.,

a—M/ 1+w 7'2

= Mw (arctan wm; — arctanwT,)

(B1)

where M is a constant containing my, co, 7o, €tc. Simi-
larly, the dispersion relation for the multiple relaxation

case should be
m w37'2 1
7 /,. 1+wirzr
1 14 w37?
=Mw-In|——%
“g (1 + wzrf)
The kernel in this case is composed of two terms K (t) =

K, (t) — tK>(t). The first term K; is the inverse Fourier
transform of Eq. (B1), i.e.,

(B2)

(B3)

V2r K, (t) = / Muw [arctan(wT;) — arctan(wT,)] e**dw

*° arctanwm — arctan wr, et dw
3t2 w

Since arctan(wT/w) is an odd function, we obtain

V2rKy(t) = —2M — o

os wtdw .

ot2

Similarly, the intergal for the dispersion relation is

*° arctan wT; — arctan wT,
w

(B4)

ot?

V2K (t) = _in % /°° In(1 + w?r?) — In(1 + w?7,)
0

Knowing that (see [13])

/ arctan coswzdz = gEl(w)O(w) ,
z

T

o | 2
/ In(1 +2%) sinwrdz = nE;(w)sgn(w)
0

where sgn is the sign function and E; is the exponential
integral of the first order, we thus obtain

K(t) = —\/ﬁM;’—; {[B1(t/m) — Ea(t/7.)]6(t)} . (B6)

Substituting Eq. (B6) in Eq. (5) and carrying out the
integration thus yields Eq. (9).

sin wtdw (B5)

w

APPENDIX C

The function { for the boundary layer problem is ¢ =
2iw and the kernel is

K(®) =a\/§ /_ Z N
“oaa | o

First let us consider the case when ¢ > 0. Changing the
variable wt = u?, we can transform the above integral
into a contour integral,
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%/eiugdu , (C1)

where the contour is composed of two straight lines: L,
coincides with the y axis on the complex plane, directed
from +o0o to the origin; L, is the positive z axis, directed
from the origin to +0o. The contributions from these two
paths are

- oo oo
/ e du = z/ cos yzdy+/ siny?dy
Ly 0 0

. 2 o o] oo
/ e du = / cosy?dy + 1/ siny?dy
Ly 0 0

Knowing that the Fresnel integrals on the right hand
sides in the above formulas have the values f0°° cosy?dy =

I3 siny®dy = /7 /8, we therefore obtain

/_:i;;m:z\/? . (C2)

Next, when t < 0, the contour becomes as follows: L]
coincides with the positive z axis, ranging from +oo to
0; L), coincides with the negative y axis, ranging from 0
to —oo. Hence,

eiwt 2 oo
—=dw=—(1+ z)/ cos y2dy
/c. Vw V-t 0

2 N R
._—t(l + z)/ siny?dy
V= 0

=0

Therefore, combining the above results, we obtain

K(t) = 2a§t— [ltl%/zo(t)} . (C3)

Substituting Eq. (C3) into Eq. (5), we thus recover
Eq. (11).
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